

How the Network for the Detection of Atmospheric Composition Change (NDACC) contributes to the provision of reference data for climate monitoring. <u>M. De Mazière¹, I. Petropavloskikh^{2,3}, J. Wild^{4,5}, J. W. Hannigan⁶, E. Mahieu⁷, J. Notholt⁸, A. Dehn⁹, and the IRWG¹⁰ and FRM4GHG¹¹ teams</u>

Improve calibration of remote sensing data towards agreed standard?

Concept of travelling standard

		enhouse										
TCCON – TCCON.Caltech.edu	NDACC Infrared Working Group		Uncertainties	s (X)C O* (%)	(X)CH4* (%)	(X)N2O	DOF	(X)CO	(Х)СН4	(X)N2O		
Bruker IFS 125HR	Bruker IFS 120HR/125HR					* (%)	TCCON	1	1	1		
Resolution 0.02cm ⁻¹	Resolution 0.0036cm ⁻¹		TCCON - random			0,5	1,0 N	NDACC	≥ 2	2,5	~3,5	
Spectral range: SWIR	SWIR, MIR and thermal IR											
CO2, CH4, N2O, CO, H2O/HDO	20, CO, H2O/HDO (CO2), CH4, N2O, CO, H2O/HDO+ CFC, HCFC, SF6, tropospheric O3,		TCCON - systematic		0 (?)	0 (?)	0 (?)	Systematic uncertainties ? Main sources are spectroscopy ad T-profile				
								\Rightarrow Removed in TCCON by				
Total column only retrievals	Profile retrievals		NDACC - random1,0NDACC - systemati2,5			1,5	1,5	dedica	- /			
Clear-sky daytime only; global coverage	Clear-sky daytime only; global coverage					3,0	2,0	Smoothing e Due to low /I resolution a		o vertica		
Data back to 2004 \rightarrow <u>https://tccondata.org/</u>	Data back to <1991 $\rightarrow \underline{NDACC}$ <u>DHF</u>		C * XCO for TCCON and NDACC; XCH4 for TCCON and CH4 column for NDACC					profiles	· · · · · · · · · · · · · · · · · · ·			
Strict QA/QC protocols	QA/QC protocols						NDACC					

Take home messages as to FTIR measurements of GHG

- - > TCCON focuses on CO2, CH4, CO and (less so) on N2O total columns;
 - partial columns.

- need progress on
 - traceability of spectroscopic data
 - ancillary data and other species interfering in the GHG retrievals.

The FRM4GHG project has demonstrated the adequateness of some compact mobile FTIR instruments to be developed as travelling See also F. Hase et al., poster T2-D12, and FRM4GHG project standards for GHG measurements, in th NIR as well as the MIR spectral domains – and possible extension to additional species like HCHO ¹Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium; ²CIRES, University of Colorado, Boulder, CO, USA; ³NOAA, Global Monitoring Lab, Boulder, CO, USA; ⁴CISESS, University of Maryland, College Park, MD, USA; ⁵NOAA/NESDIS/STAR, College Park, MD, USA; ⁶NCAR, Boulder, CO, USA; ⁷ ULiège, Liège, Belgium; ⁸ Institute of Environmental Physics, University of Bremen, Bremen, Germany, ⁹ ESA, ESRIN, martine.demaziere@aeronomie.be; ndacc.org; frm4ghg.aeronomie.be Frascati, Italy; ¹⁰ www.ndacc.org, ¹¹ frm4ghg.aeronomie.be

The global monitoring networks NDACC FTIR and TCCON provide long-term climate data records of GHG data, since 1991 and 2004, resp. – with high accuracy and precision. Both networks are well on their way towards providing the data according to the FAIR data principles.

> NDACC-FTIR provides CH4, CO, N2O plus additional short- and long-lived climate pollutants like CFC, HCFC, HFC, SF6, ...total and

□ The smoothing error must be accounted for in the total uncertainty budget to have the full picture.

Documentation on applied calibration factors and procedures must be included with the data.

To improve site-to-site consistency and calibration towards agreed standards for consistency between remote sensing and in-situ data, we

> traveling standard instruments and in-situ measurements from airborne platforms not only for target GHG gases but also for