
Deliverable D3.2.1
FRM4GHG2.0

20 September 2023
Page 1

__

FRM4GHG 2.0

Fiducial Reference Measurements for

Greenhouse Gases

Create handling for CAMS a-priori for PROFFAST

Deliverable: D3.1.2

Date: 20/09/2023

Lead authors: Benedikt Herkommer, Frank Hase

Subject: ESA-Contract No. 4000136108/21/I-DT-lr

Category: ESA Express Procurement (EXPRO)

Our ref.: Proposal, FRM4GHG 2.0 – Expro, ESA RFP/3-17031/21/I-

DT-lr, revision from 27 August 2021 and 7 September 2021

Deliverable D3.2.1
FRM4GHG2.0

20 September 2023
Page 2

__

Table of contents
1 Document change record .. 3
2 Access list .. 3
3 Purpose ... 3
4 Document structure ... 3
5 Applying CAMS a priori to PROFFAST .. 3
5.1 Generation of a PROFFAST compatible a-priori and adaption to PROFFAST 4
5.2 Processing of One Day of Test Data .. 5
6 APENDIX A ... 7
7 Literature ... 11

Deliverable D3.2.1
FRM4GHG2.0

20 September 2023
Page 3

__

1 DOCUMENT CHANGE RECORD

Issue Date Item Comment

V1.0 2023-09-20 - Initial version

2 ACCESS LIST

This document is the deliverable “D3.1.2: Create handling for CAMS a-priori for PROFFAST”

created for the project FRM4GHG 2.0 and will be submitted to ESA. The document can be

downloaded from the project webpage http://frm4ghg.aeronomie.be.

3 PURPOSE

This document reports the progress on the Task 2 of the WP 3 of the ESA project “Fiducial

Reference Measurements For Ground-based IR Greenhouse Gas Observations 2.0”.

It focuses on the deliverable “D3.1.2” which describes the progress in using a priori trace gas

profiles generated by the Copernicus Atmospheric Monitoring Service (CAMS) for the COCCON

data analysis.

4 DOCUMENT STRUCTURE

See Table of Contents

5 APPLYING CAMS A PRIORI TO PROFFAST

For the processing of atmospheric ground-based remote sensing Fourier Transform Infrared (FTIR)

measurements so-called a-priori profiles of atmospheric temperature and vertical mixing ratios of

gases are required. Specifically, the PROFFAST data analysis used by COCCON also requires a-

priori data.

The a-priori files provide pre-calculated height resolved profiles of the temperature and relevant

trace gases. The required data are either based on climatological expectation or derived from

atmospheric model runs.

As default the Collaborative Carbon Column Observing Network (COCCON) uses the same a-priori

as the Total Carbon Column Observing Network (TCCON) which is generated centrally by the

California Institute of Technology using data from the Goddard Earth Observing System Forward

Product for Instrument Teams (GEOS FP-IT) (Laughner, et al., 2023). The files containing the a-

prioris are called the “map-files” in the following. These data become available with some delay (in

the order of several days), so this choice might hamper near-real time FTIR data processing in some

future. Moreover, some features of the reported gas profiles are derived from climatological

expectation, so it is expected that using profiles generated by a dedicated state-of-the-art

http://frm4ghg.aeronomie.be/

Deliverable D3.2.1
FRM4GHG2.0

20 September 2023
Page 4

__

atmospheric CAMS model run would allow for a superior description of the atmospheric state.

Note that the input format for the a-priori information required by PROFFAST carefully follows the

format convention set by TCCON. We believe that this is an important aspect of COCCON data

processing design philosophy, as this choice conserves the direct interchangeability of a-priori

information between TCCON and COCCON, which obviously is a highly desirable feature. The

files provided currently by BIRA still deviate from the format defined by TCCON. We created a

workaround in order to compensate for this incompatibility by implementing specific adaptions in

the PROFFAST version used for this exercise, but it should be kept in mind as important

requirement that any further development of using CAMS profiles for operational COCCON data

analysis needs to be realized in full accordance to the map-file formatting imposed by TCCON.

In the framework of the FRM4GHG-II project the project partner Royal Belgian Institute for Space

Aeronomy (BIRA) generated map-files based on the data of the Copernicus Atmospheric

Monitoring Service (CAMS) in a similar format needed for the PREPROCESS used by the

COCCON. This is described in the status report for the deliverable D.3.1.1.

The CAMS map-file contains a-priori information for temperature, CO2, CH4 and H2O. This

document describes the conversion of the CAMS map-files to a PROFFAST compatible format and

needed adaptations in PROFFAST and the PROFFASTpylot. Furthermore, the map-file is used to

evaluate a test-day of COCCON data and compared to a standard COCCON evaluation.

5.1 Generation of a PROFFAST compatible a-priori and adaption to

PROFFAST

The provided CAMS a-priori are not directly compatible with TCCON map files as digested by

PROFFAST for two reasons. Firstly, they contain height resolved mixing ratios of only CO2, CH4

and H2O. To get a retrieval working at least the height resolved mixing ratio of O2 would be needed.

Secondly, the format is not compatible with the TCCON map-file format. PROFFAST reads in the

map-file format using a fixed FORTRAN format specifier.

Therefore, a program, named MapfileMerger, is written, which takes data of the standard TCCON

a prioris (in the following called FPIT) to complement the missing columns in the CAMS a priori.

Furthermore, this program writes out the data in a format which is compatible with PROFFAST as

well as the PROFFASTpylot.

The code of this program is given in Appendix A. It is written as a standalone program, but designed

such to be integrated as an Ad-On to the PROFFASTpylot with very minor changes.

For example, it reads in the standard PROFFASTpylot input file such that in case of an add on the

input data can either be directly inherited by the PROFFASTpylot class or be passed from the

PROFFASTpylot module “Preparation” to the “MapfileMerger”.

In addition, it is necessary to make three minor changes in the PROFFAST and PROFFASTpylot

code:

1. In the class “Preparation” of the PROFFASTpylot in the module, it is necessary to implement

a flexible time difference between two map-files. As the FPIT a priori are created in a 3-hour

interval this time difference was hardcoded. Now it is read out by the following code in the

Deliverable D3.2.1
FRM4GHG2.0

20 September 2023
Page 5

__

method “_interpolate_map_files”:
 t2 = int(mapfiles[i_noon][-7:-5])
 t1 = int(mapfiles[i_noon - 1][-7:-5])
 # interpolate between the files

 tdiff = abs(t2 - t1) * 60 * 60 # seconds
2. The module “pcxs” of PROFFAST reads in the a priori data. As the CAMS map-files have a

finer grid than the FPIT map-files it is necessary to increase a hard-coded level limit in “pcxs”.

In the subroutine “read_pT” the variable “npT_max” must be changed from 120 to 140.

3. In the subroutine “read_vmr” the variable “nvmr_max” must be changed from 120 to 140.

5.2 Processing of One Day of Test Data

To test the CAMS a priori the data collected during 3rd of January 2023 in Karlsruhe using the

COCCON reference spectrometer SN37 are processed twice using either the standard TCCON

(FPIT) map-files or the newly generated hybrid CAMPS-FPIT map files. Figure 5-3 shows the a-

priori files according to TCCON and CAMS.

The results for XCO2 and XCH4 are plotted in Figure 5-1 and Figure 5-2, respectively. The upper

panel show in blue the time series of the XGas values retrieved using the FPIT a priori in blue and

in the CAMS a priori in orange. The lower panels show the difference between both retrievals.

The maximum deviation for XCO2 is approximately 0.08 % and 0.14 % for XCH4.

Figure 5-2: XCO2 results of PROFFAST using the

different a priori.

Figure 5-1: XCH4 results of PROFFAST using the

different a priori.

Deliverable D3.2.1
FRM4GHG2.0

20 September 2023
Page 6

__

Figure 5-3: direct comparison of a-priori profiles of CO2, CH4 and the Temperature (TCCON and CAMS).

Deliverable D3.2.1
FRM4GHG2.0

20 September 2023
Page 7

__

6 APENDIX A

import yaml

import os

import pandas as pd

import numpy as np

import logging

import glob

import datetime as dt

import fortranformat as ff

class MapfileMerger:

 """Merge the mapfiles by BIRA and by Caltech to a single map-file"""

 def __init__(self, inputfile):

 """Init the MapfileMerger class"""

 # create a logger. Can be replaced later by pylots logger

 self.logger = self.create_logger()

 # read input file

 with open(inputfile, "r") as f:

 args = yaml.load(f, Loader=yaml.FullLoader)

 # and safe the content as `self` variables:

 for option, value in args.items():

 self.__dict__[option] = value

 def create_logger(self):

 """Create a logger. Can be replaced later by Pylots logger."""

 logger = logging.getLogger()

 # set logging to debug to record everything in the first place

 logger.setLevel(logging.DEBUG)

 StreamHandler = logging.StreamHandler()

 StreamHandler.setLevel(logging.DEBUG)

 logger.addHandler(StreamHandler)

 return logger

 def read_fpit_mapfiles(self, day:dt.date):

 """Read the caltech mapfile."""

 # We only need the hours 00, 06, 12, and 18:

 map_list = self._get_mapfile_list(day, self.fpit_map_path)

 self.fpit_mapfiles = {}

 for file, hour in zip(map_list, [0, 6, 12, 18]):

 tempdf = pd.read_csv(

 file,

 skipinitialspace=True,

 header=10)

Deliverable D3.2.1
FRM4GHG2.0

20 September 2023
Page 8

__

 tempdf.drop(index=0, inplace=True)

 tempdf = tempdf.astype(np.float64)

 self.fpit_mapfiles[hour] = tempdf

 def read_cams_mapfiles(self, day:dt.date):

 """Read the bira mapfiles"""

 map_list = self._get_mapfile_list(day, self.cams_map_path)

 # remove potential `comma_separated` files

 for file in map_list.copy():

 if "comma_seperated" in file:

 map_list.remove(file)

 self.cams_mapfiles = {}

 for file, hour in zip(map_list, [0, 6, 12, 18]):

 # we first need to add commas to the data:

 comma_file = os.path.join(

 os.path.dirname(file),

 "comma_seperated_" + os.path.basename(file))

 with open(file, "r") as infile:

 with open(comma_file, "w") as outfile:

 for i, line in enumerate(infile):

 if i < 10: continue

 elif i == 10:

 outfile.write(line[2:]) # drop `#`

 elif i == 11: continue

 else:

 line = line.split()

 line = ",".join(line)

 outfile.write(line + "\n")

 # now we have an easy-readble csv file:

 tempdf = pd.read_csv(comma_file)

 tempdf = tempdf.astype(np.float64)

 self.cams_mapfiles[hour] = tempdf

 def interpolate_caltech_to_cams_height(self):

 """Interpolate the Caltech data to the CAMS height grid"""

 self.interpolated_map = {}

 def replace_NaN(row:pd.Series):

 row = row.fillna(np.nan)

 if np.isnan(row["Height"]):

 row["Height"] = row["Height_fpit"]

 return row

 for h in [0, 6, 12, 18]:

 cams = self.cams_mapfiles[h]

 fpit = self.fpit_mapfiles[h]

 # fpit = pd.DataFrame()

Deliverable D3.2.1
FRM4GHG2.0

20 September 2023
Page 9

__

 fpit.rename(

 lambda x: x + "_fpit", inplace=True, axis="columns")

 fpit_cols = fpit.columns

 merged_df = pd.merge_ordered(

 cams, fpit, left_on="Height", right_on="Height_fpit")

 merged_df = merged_df.apply(

 replace_NaN, axis=1)

 merged_df.set_index("Height", inplace=True, drop=True)

 for column in fpit_cols:

 merged_df[column] =\

 merged_df[column].interpolate(

 method="slinear")

 merged_df.dropna(subset=["Temp"], inplace=True)

 merged_df.dropna(subset=["hf_fpit"], inplace=True)

 merged_df.reset_index(inplace=True, drop=False)

 merged_df.drop(columns=[

 "Height_fpit", "Temp_fpit", "Pressure_fpit",

 "Density_fpit", "h2o_fpit", "co2_fpit", "ch4_fpit",

 "gravity_fpit"], inplace=True)

 merged_df.rename(columns={

 "hdo_fpit": "hdo",

 "n2o_fpit": "n2o",

 "co_fpit": "co",

 "hf_fpit": "hf",

 "o2_fpit": "o2"

 }, inplace=True)

 merged_df = \

 merged_df[[

 "Height", "Temp", "Pressure", "Density", "h2o", "hdo",

 "co2", "n2o", "co", "ch4", "hf" , "o2", "gravity"]]

 self.interpolated_map[h] = merged_df

 def convert_fpit_wet_to_dry(self):

 """Convert the columns of the cams map-file to dry air mole fractions

 """

 gas_cols = ["h2o", "co2", "ch4", "o2", "co", "hdo", "hf"]

 for h in [0, 6, 12, 18]:

 df = self.fpit_mapfiles[h]

 df["h2o_dry"] = 1 / (1 / df["h2o"] - 1)

 for gas in gas_cols:

 if gas == "h2o":

 continue

Deliverable D3.2.1
FRM4GHG2.0

20 September 2023
Page 10

__

 df[gas+"_dry"] = df[gas] * (1 + df["h2o_dry"])

 df["Density_dry"] = df["Density"] - df["Density"] * df["h2o"]

 for gas in gas_cols + ["Density"]:

 df.drop(columns=[gas], inplace=True)

 df.rename(columns={gas+"_dry": gas}, inplace=True)

 self.fpit_mapfiles[h] = df

 def write_final_mapfiles(self, day):

 """Write the final map-files in the format provided by gSetup"""

 header = \

"""12 13

ka_49N_008E_2023010100Z.map

This is the header of a custom map-file which is generated by a combining CAMS and FPIT data.

The header must be 12 lines long and needs the following statement in the second line:

ID_xxN_zzzE_.

The xx must be the latitude N stands for North or South. zzz is the longitude E ist East or West.

All columns are DRY-air mole fractions!

The CAMS data are provided by BIRA which comprises

Height, Temp, Pressure, Density, h2o, co2, ch4, gravity

The FPIT data are provided by Caltech which provide a standard map file.

Height,Temp,Pressure,Density,h2o,hdo,co2,n2o,co,ch4,hf,o2,gravity

km,K,hPa,molecules_cm3,parts,parts,ppm,ppb,ppb,ppb,ppt,parts,m_s2

"""

 for h in [0, 6, 12, 18]:

 output_mapfile = \

 os.path.join(

 self.map_path,

 f"{self.site_abbrev}_CustomCAMS_"

 f"{day.strftime('%Y%m%d')}{h:02d}Z.map")

 with open(output_mapfile, "w") as f:

 f.writelines(header)

 # write the rest of the file

 frw = ff.FortranRecordWriter(

 "(2(f8.3,','),4(e10.4,','),1x,(f7.3,','),1x,(f7.3,','),"

 "(e10.3,','),1x,(f6.1,','),(f8.3,','),1x,(f6.4,','),1x,"

 "f5.3)")

 data = self.interpolated_map[h]

 data = data.to_numpy()

 for line in data:

 f.write(frw.write(line) + "\n")

 def _get_mapfile_list(self, day:dt.date, path:str):

 """Create a list of the needed map files and check if available."""

 # We only need the hours 00, 06, 12, and 18:

 map_list = []

Deliverable D3.2.1
FRM4GHG2.0

20 September 2023
Page 11

__

 for hour in ["00", "06", "12", "18"]:

 temp_list = glob.glob(os.path.join(

 path, f"*_{day.strftime('%Y%m%d')}{hour}Z.map"

))

 if len(temp_list) == 0 or (temp_list is None):

 self.logger.error(

 f"Could not find mapfile matching the scheme"

 f"'*_{day.strftime('%Y%m%d')}{hour}Z.map' in {path}. "

 "Quit the program!"

)

 exit()

 map_list.extend(temp_list)

 map_list.sort()

 return map_list

if __name__ == "__main__":

 MyMerger = MapfileMerger(r"PROFFASTpylot_example_input.yml")

 testday = dt.date(year=2023, month=1, day=3)

 MyMerger.read_fpit_mapfiles(testday)

 MyMerger.convert_fpit_wet_to_dry()

 MyMerger.read_cams_mapfiles(testday)

 MyMerger.interpolate_caltech_to_cams_height()

 MyMerger.write_final_mapfiles(testday)

7 LITERATURE

Laughner, J. L., Roche, S., Kiel, M., Toon, G., Wunch, D., Baier, B., . . . Wennberg, P. (2023). A

new algorithm to generate a priori trace gas profiles for the GGG2020 retrieval algorithm.

Atmospheric Measurement Techniques, S. 1121-1146. doi:10.5194/amt-16-1121-2023

